
Batch Prediction Framework:
Long Context and Context Caching for Video Analysis

Sean Brar

hello@seanbrar.com | � seanbrar.com | § github.com/seanbrar

Google Summer of Code 2025 - Google DeepMind Project Proposal

1 Introduction and Background

1.1 Executive Summary

This proposal outlines an efficient and scalable framework for analyzing educational video
content using the Gemini API. The approach combines advanced techniques including op-
timized batch prediction, intelligent context caching, and conversational memory to reduce
API usage significantly while improving coherence in multimodal interactions. Inspired
by my previous development of ContextRAG, a retrieval-augmented generation system
employing adaptive processing strategies, this architecture specifically addresses common
limitations encountered when managing extensive and complex video inputs. By integrat-
ing these strategies into a cohesive system, the proposal provides both a practical tool
for video analysis and a comprehensive demonstration of Gemini API best practices for
developers.

1.2 Background and Relevant Experience

As the developer of ContextRAG, a scalable retrieval-augmented generation system, I imple-
mented context-aware processing strategies to optimize semantic retrieval, efficient handling
of document collections, and adaptive processing based on content complexity. ContextRAG
demonstrated clear advantages in computational efficiency and retrieval accuracy by intelligently
adapting approaches based on document length and structure. These experiences directly inform
my strategies for effective long-context and multimodal processing in this proposal.

Additional relevant qualifications include: Caltech AI/ML Certificate (2025), experience with
Google APIs, strong Python programming skills, and systems engineering background with
expertise in scaling solutions.

1.3 Academic and Time Commitments

During the GSoC period (June 16 - August 22, 2025), I will be taking two summer courses
at Glendale Community College (Computer Architecture and Assembly Language, Precalculus
II). I can dedicate 20+ hours weekly to GSoC with slightly reduced availability around ex-
ams. I’ve specifically chosen this 175-hour project to ensure complete delivery despite academic

1

https://seanbrar.com
https://github.com/seanbrar

Sean Brar GSoC 2025 - Google DeepMind

commitments.

2 Problem Understanding

2.1 Project Context and Goals

This project addresses the challenge of efficiently extracting information from educational videos
through natural language queries. When users ask multiple questions about video content,
traditional approaches lead to inefficiency (redundant API calls), context fragmentation (long
transcripts exceeding model limits), and lack of conversational coherence (follow-up questions
without previous context).

For example, a student might ask "What are the three main factors affecting climate change
mentioned at 15:23?" followed by "How do these factors interact?" and "Which mitigation
strategy was recommended for the second factor?" The goal is to create a solution that: (1)
optimizes API usage through batch processing and context caching, targeting a 4× reduction
in calls, (2) effectively handles complete transcripts using Gemini’s context capabilities, (3)
maintains conversation coherence across related questions, and (4) provides clear responses with
precise timestamp references.

2.2 Technical Challenges Analysis

The system must address four interconnected technical challenges:

1. Batch Prediction Optimization

• Organizing questions with varying complexity and dependencies into optimal batches

• Balancing throughput gains against potential quality degradation

• Implementing efficient asynchronous processing while respecting API rate limits

2. Long Context Management

• Processing transcripts that approach or exceed even Gemini’s extended context limits

• Preserving semantic relationships when chunking is necessary

• Optimizing token usage while maintaining content integrity

3. Context Caching Implementation

• Developing appropriate caching strategies with optimal TTL parameters

• Ensuring cache consistency and handling cache misses

• Managing partial caching for extremely large transcripts

4. Conversation Coherence

• Resolving references to previous answers in follow-up questions

• Selectively including relevant conversation history without exceeding context limits

• Maintaining terminology consistency across related responses

2

Sean Brar GSoC 2025 - Google DeepMind

2.3 State of the Art and Related Work

Recent advances in LLM optimization provide a foundation for this project:

2.3.1 Batch Processing Techniques

Research by Cheng et al. (EMNLP 2023) demonstrates that batch prompting can reduce infer-
ence token counts and latency nearly inverse-linearly with batch size—achieving approximately
5× cost reduction with 6-query batches while maintaining accuracy. These findings directly
inform the system’s batching strategy.

2.3.2 Long Context Management Approaches

Gemini’s context window (up to 1-2 million tokens) enables whole-transcript analysis for most
educational videos. According to Google’s documentation, Gemini 1.5 achieved >99.8% recall on
"needle-in-a-haystack" tests with 1M-token inputs, demonstrating reliable information retrieval
across extended contexts. For content exceeding these limits, Retrieval-Augmented Generation
(RAG) provides an efficient fallback by extracting relevant transcript segments and linking
answers to precise video timestamps.

2.3.3 Context Caching Innovations

Google’s Gemini API introduced explicit context caching designed specifically for "repetitive
analysis of lengthy video files." This feature allows caching of large blocks of text under persistent
IDs for configurable periods (default: 1 hour), significantly reducing both token costs and latency
for repeated queries. The proposed system leverages this capability as a cornerstone of applicable
efficiency optimizations, while accounting for Gemini’s minimum cache size requirement (32K
tokens).

2.3.4 Conversation Memory Management

To combat "Context Degradation Syndrome," where models gradually "lose the plot" in ex-
tended conversations (Howard, 2024), the framework employs a hybrid approach using sum-
marization for older exchanges while maintaining full context for recent and highly relevant
interactions. This strategy, supported by research from VerticalServe and implemented in frame-
works like LangChain, provides the optimal balance between conversation coherence and token
efficiency.

2.4 Synthesis

While these techniques have been explored separately, their integration into a comprehensive sys-
tem for video content analysis represents a novel contribution that addresses unique challenges
not solved by any single technique alone. By leveraging Gemini’s multimodal understanding and
context-handling capabilities, this architecture will deliver a reference framework that demon-
strates best practices for efficient, user-friendly, and cost-effective AI-powered video analysis.
The project includes benchmarking components to measure performance improvements across
various metrics: API call reduction, latency improvement, token efficiency, and answer quality
compared to non-optimized approaches.

3

Sean Brar GSoC 2025 - Google DeepMind

3 Technical Approach

3.1 System Architecture

The system follows a modular architecture designed to leverage Gemini API’s capabilities while
addressing the specific requirements for batch prediction, long context handling, and efficient
interconnected question processing:

Video
Processor

Input
Processor

Context
Manager

Conversation
Memory

Async Batch
Manager

Query
Orchestrator

Performance
Monitor

Gemini API
Client

Response
Formatter

Memory Feedback

Error Handling & Recovery

Component Types:

Core Processing Video Processing Conversation Mgmt

Batch Processing API Interaction Performance Opt

Figure 1: System Architecture for Batch Prediction with Long Context

The system is composed of nine specialized components:

1. Video Processor: Handles video input, transcript generation, and timestamps extraction

2. Input Processor: Normalizes transcript text and analyzes questions for dependencies

3. Context Manager: Implements context caching and selects optimal strategies based on
transcript length.

4. Query Orchestrator: Groups questions for efficient batching while respecting dependen-
cies

5. Async Batch Manager: Optimizes asynchronous processing for independent question
batches.

6. Conversation Memory: Maintains state for interconnected questions to ensure coherent
follow-ups.

7. Gemini API Client: Provides efficient interface to Gemini’s capabilities with authenti-

4

Sean Brar GSoC 2025 - Google DeepMind

cation and caching.

8. Response Formatter: Creates structured outputs with video timestamp references

9. Performance Monitor: Tracks token usage and optimizations to measure efficiency gains

Cross-Cutting Concern: The Error Handling & Recovery system spans all components, pro-
viding input validation, error classification, exponential backoff for transient failures, and grace-
ful degradation paths when primary strategies encounter limitations.

3.2 Model Selection Rationale

This system strategically uses Gemini 1.5 Pro as the primary model despite the availability
of newer Gemini 2.0 and 2.5 models (released in Q1 2025). This decision is based on several
technical considerations:

1. Context Caching Support: Gemini 1.5 Pro provides explicit context caching capabil-
ities, which are essential for this project’s efficiency goals. As of April 2025, the newer
models do not support this feature, which is central to achieving the targeted 4-5× reduc-
tion in API calls.

2. Extended Context Window: Gemini 1.5 Pro offers an input token limit of 2,097,152
tokens, approximately twice that of other models. According to Google’s documentation,
this allows for processing videos up to two hours in length without chunking, which sig-
nificantly simplifies transcript handling for most educational content.

3. Cost-Performance Balance: While Gemini 1.5 Pro has higher per-token costs than
Gemini 1.5 Flash, the context caching feature ultimately reduces overall token consumption
by avoiding redundant processing of the same transcript for multiple questions.

The architecture is designed with modularity to facilitate migration to newer models when
context caching becomes available for them, ensuring the system remains adaptable to evolving
API capabilities.

3.3 Key Implementation Highlights and Optimization Benefits

The system focuses on five core technical components that enable efficient video content analysis
with Gemini’s API capabilities, delivering significant optimization benefits.

3.3.1 Context Caching Implementation

For efficient repeated access, the system implements Gemini’s context caching API to store
transcript content:

1 def cache_transcript_content(transcript , ttl="3600s"):
2 """Cache transcript segment in Gemini ’s context cache"""
3 display_name = f"transcript_{hashlib.md5(transcript.encode ()).

hexdigest () [:16]}"
4

5 cache = client.caches.create(
6 model="models/gemini -1.5-pro -001",
7 config=types.CreateCachedContentConfig(
8 display_name=display_name ,

5

Sean Brar GSoC 2025 - Google DeepMind

9 contents=transcript ,
10 ttl=ttl ,
11)
12)
13 return cache

The caching system implements whole-transcript caching for content under 125K tokens and seg-
mented caching with variable TTL settings for longer transcripts, optimizing both performance
and cost.

3.3.2 Token Tracking and Optimization

The architecture uses Gemini’s direct token counting capabilities to make informed decisions
about context handling:

1 def select_context_strategy(transcript , client):
2 """Select appropriate context strategy based on transcript length

"""
3 token_count_response = client.models.count_tokens(
4 model="models/gemini -1.5-pro -001",
5 contents=transcript
6)
7 token_count = token_count_response.total_tokens
8

9 if token_count < 8000:
10 return {"strategy": "standard_context", "model": "models/

gemini -1.5-flash -001"}
11 elif token_count < 125000:
12 return {"strategy": "long_context", "model": "models/gemini

-1.5-pro -001"}
13 else:
14 # For extremely large transcripts (>125K tokens), use

chunking with RAG
15 return {"strategy": "chunked_retrieval", "model": "models/

gemini -1.5-pro -001"}

This approach provides precise usage metrics for cost optimization and enables intelligent model
selection based on content length.

3.3.3 Batch Processing Implementation

The system optimizes question processing through intelligent batching, combining multiple ques-
tions into a single API call:

1 def process_question_batch(client , batch , cache):
2 """Process a batch of independent questions efficiently"""
3 formatted_prompt = "Answer each of the following questions about

the video :\n\n"
4

5 for i, question in enumerate(batch , 1):
6 formatted_prompt += f"Question {i}: {question[’text ’]}\n"

6

Sean Brar GSoC 2025 - Google DeepMind

7

8 # Make a single API call with the batched questions
9 response = client.models.generate_content(

10 model="models/gemini -1.5-pro -001",
11 contents=formatted_prompt ,
12 config=types.GenerateContentConfig(cached_content=cache.name)
13)
14 return response

This approach significantly reduces API call overhead while maintaining answer quality, with
batch sizes dynamically selected based on token count constraints.

3.3.4 Video Processing Integration

Direct video processing leverages Gemini’s multimodal capabilities through the File API, with
accurate tracking of video token usage (263 tokens per second):

1 def process_video_file(video_path):
2 """Upload and process a video file using Gemini ’s File API"""
3 video_path = pathlib.Path(video_path) if isinstance(video_path ,

str) else video_path
4

5 # Upload the video using the Files API
6 video_file = client.files.upload(file=video_path)
7

8 # Wait for the file to finish processing
9 while video_file.state.name == ’PROCESSING ’:

10 time.sleep (2)
11 video_file = client.files.get(name=video_file.name)
12

13 return video_file

3.3.5 Structured Output Implementation

The system generates consistent, machine-readable JSON responses using Gemini’s structured
output capabilities:

1 from pydantic import BaseModel
2 from typing import List , Optional , Dict
3

4 class VideoAnswer(BaseModel):
5 """Model for structured video answers"""
6 question: str
7 answer: str
8 question_id: Optional[int]
9 timestamps: List[Dict[str , str]]

10 metadata: Dict[str , any]
11

12 def generate_structured_response(result_data):
13 """Generate a structured JSON response"""
14 response = client.models.generate_content(

7

Sean Brar GSoC 2025 - Google DeepMind

15 model="models/gemini -1.5-pro -001",
16 contents=f"Convert the following result data into JSON: {

result_data}",
17 config ={
18 ’response_mime_type ’: ’application/json’,
19 ’response_schema ’: List[VideoAnswer],
20 },
21)
22 return response.text

3.4 End-to-End Processing Flow

The complete system integrates these components into a cohesive pipeline that processes video
uploads, generates and caches transcripts, analyzes question dependencies, processes questions in
optimized batches, and returns structured responses with timestamp references. This approach
delivers a 4–5× reduction in API calls while maintaining conversation coherence across multiple
related questions.

3.5 Key Benefits

This architecture achieves the following improvements:

• API Usage Optimization: Intelligent batch processing and context caching enable a
targeted 4–5× reduction in API calls and associated costs.

• Long Context Handling: Leveraging Gemini’s million-token context capabilities for
handling even multi-hour educational videos.

• Accurate Token Tracking: Direct token counting instead of estimation, providing pre-
cise usage metrics for cost optimization.

• Video Token Optimization: Specialized handling for video content (which consumes
263 tokens/second) with exact duration detection.

• Enhanced User Experience: Structured responses with direct links to relevant video
timestamps and consistent formatting.

This implementation serves as both a practical tool for analyzing educational video content
and a reference architecture demonstrating Gemini API best practices for multimodal content
analysis.

4 Implementation Plan

4.1 Project Timeline

The project will be implemented over the 13-week GSoC period, with a phased approach to
ensure consistent progress and regular deliverables.

4.1.1 Community Bonding Period (May 2025)

• Set up development environment and GitHub repository

8

Sean Brar GSoC 2025 - Google DeepMind

• Study Gemini API documentation and test basic functionality

• Establish communication channels and evaluation metrics with mentor

• Create preliminary design documents and project structure

4.1.2 Phase 1: Foundation (June 2 - June 23)

• Week 1: Core Architecture Implementation
Implement basic system architecture, input processing module, and testing framework
Deliverable: Repository with basic architecture and module structure

• Week 2: API Integration Layer
Develop Gemini API client with authentication, retry logic, and error handling
Deliverable: Working API client with test suite

• Week 3: Batch Optimization & Processing
Develop batch optimization algorithms with dependency analysis and processing utilities
Deliverable: Basic batch processing implementation

4.1.3 Phase 2: Core Features (June 24 - July 21)

• Week 4: Context Caching Implementation
Implement context caching module with cache creation, management, and optimization
utilities.
Deliverable: Working context caching system with tests

• Week 5: Context Classification and Chunking
Build transcript classification system with chunking strategies for different transcript
lengths.
Deliverable: Working transcript processing system

• Week 6: Conversation Memory & Question Dependencies
Create conversation memory manager with dependency tracking and relationship analysis
Deliverable: Working conversation memory system

• Week 7: Response Formatting & Timestamp Handling
Build response enhancement with timestamp extraction, linking, and structured output
generation.
Deliverable: Complete response formatting system

4.1.4 Phase 3: Optimization & Testing (July 22 - August 18)

• Week 8: Performance Optimization
Implement asynchronous batch processing and optimize token usage and API calls
Deliverable: Optimized processing pipeline

• Week 9: Error Handling & Resilience
Enhance error recovery mechanisms and implement graceful degradation
Deliverable: Robust error handling framework

• Week 10: Comprehensive Testing
Create extensive test suite with varied content and benchmark comparisons

9

Sean Brar GSoC 2025 - Google DeepMind

Deliverable: Comprehensive test results and metrics

• Week 11: Documentation & Examples
Create comprehensive API documentation, detailed setup instructions (including obtaining
and configuring API keys), practical usage examples with representative questions and
expected outputs, and configuration guides.
Deliverable: Complete, detailed documentation including API configuration and fully
commented example code.

4.1.5 Final Phase: Polishing (August 19 - September 1)

• Week 12: Code Cleanup & Final Optimizations
Perform code review, refactoring, and implement final optimizations
Deliverable: Clean, optimized codebase

• Week 13: Final Documentation & Delivery
Update documentation, create demo materials, prepare contribution guidelines
Deliverable: Complete project with documentation

5 Community Benefits and Conclusion

5.1 Benefits to DeepMind and Developer Community

This solution will provide significant value to both DeepMind and the broader developer ecosys-
tem:

• Showcase for Gemini Capabilities: Demonstrates Gemini’s advanced features in a
real-world application that drives API adoption.

• Reference Implementation: Provides a complete example of best practices for batch
prediction, context caching, and long-context processing.

• Educational Resource: Well-documented code with performance insights helps devel-
opers make informed architectural decisions.

• Practical Solutions: Reusable patterns and utilities for common challenges in video
content analysis.

5.2 Conclusion

The proposed system provides a comprehensive and novel solution for efficiently analyzing video
content with LLMs by uniquely integrating optimized batch prediction, adaptive context caching,
and conversational memory management into a unified framework. This integration effectively
addresses critical limitations that current standalone approaches fail to solve, enabling signifi-
cant improvements in API efficiency, conversational coherence, and long-context processing. By
making strategic model selections based on feature requirements rather than just recency, and
implementing intelligent rate limit management for real-world deployment considerations, the
system achieves practical optimization across multiple dimensions. Drawing directly on my prior
experience developing ContextRAG, this modular and extensible architecture demonstrates best
practices while fully showcasing Gemini’s advanced capabilities for multimodal content analysis.

10

	Introduction and Background
	Executive Summary
	Background and Relevant Experience
	Academic and Time Commitments

	Problem Understanding
	Project Context and Goals
	Technical Challenges Analysis
	State of the Art and Related Work
	Batch Processing Techniques
	Long Context Management Approaches
	Context Caching Innovations
	Conversation Memory Management

	Synthesis

	Technical Approach
	System Architecture
	Model Selection Rationale
	Key Implementation Highlights and Optimization Benefits
	Context Caching Implementation
	Token Tracking and Optimization
	Batch Processing Implementation
	Video Processing Integration
	Structured Output Implementation

	End-to-End Processing Flow
	Key Benefits

	Implementation Plan
	Project Timeline
	Community Bonding Period (May 2025)
	Phase 1: Foundation (June 2 - June 23)
	Phase 2: Core Features (June 24 - July 21)
	Phase 3: Optimization & Testing (July 22 - August 18)
	Final Phase: Polishing (August 19 - September 1)

	Community Benefits and Conclusion
	Benefits to DeepMind and Developer Community
	Conclusion

